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Abstract—We investigate the application of differential physics
in two scenarios involving the movement of objects using fluid
streams. Through a PhiFlow-based simulation, we demonstrate
the feasibility of moving an object horizontally using vertical
streams and vice-versa, through iterative optimisation of the
properties of the controlled flow sources. This intriguing dis-
covery has the potential to enable the development of devices
capable of moving distant objects in various directions using
fixed unidirectional blowers.

Index Terms—Differentiable physics, numerical optimisation,
computational fluid dynamics, simulation.

I. INTRODUCTION

The study of object displacement with air or water is a
captivating subject in the fields of robotics and logistics,
as it can provide insights into solving complex interactions
between solids and fluids. The systems developed for such
tasks must respect the physical laws governing the interactions
between an agent and its surroundings. However, even when
an accurate physical model is available, some interactions are
nearly impossible to calculate analytically. An example of such
a problem is the calculation of the exact timing and intensity of
a stream of air to move a certain object to the desired location,
while simultaneously satisfying additional constraints, such as
the desired trajectory.

Previous studies have applied physics-based training to
scenarios involving object interactions with air or water flows.
For instance, reinforcement learning (RL) is used to train
controllers that use air or water jets to maintain an object’s
position under gravity or even direct the ball in a simulated
volleyball game [1]. Unfortunately, these controllers rely on
fluid flow information from the simulator, which cannot be
obtained in the real world.

To combine the benefits of traditional physical modelling
and machine learning, one promising approach is to employ
differentiable physics (DP), a machine learning framework
that employs differentiable states to model the interactions
between physical entities. Differentiability of simulated states
provides significant potential for using optimisation algorithms
to discover control inputs that facilitate a wide range of highly
complex simulated interactions [2]. This approach is explored
in [3], where a neural network-based controller is trained to
move an object to a desired location while overcoming external
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forces resulting from turbulent air flows. Notably, this con-
troller relies solely on the object’s observable properties, such
as its orientation, velocity, and related characteristics, to make
the appropriate decisions. The authors show that controllers
trained using DP perform better than RL or handcrafted PID-
controller baselines. Yet, how to train realistic devices that
manipulate objects with fluid flows still needs to be explored.
In this article, we investigate the efficacy of DP for discovering
control signals that move objects perpendicular to the air
streams produced by simulated blowers.

II. METHOD

We consider two types of simulated control tasks, depicted
in Fig. 1. The first horizontal scenario (Fig. 1a) aims to propel
a box to the left as far and as fast as possible, by employing
an array of eight regulated vertical blowers. The controlled
variable is the speed of the fluid exiting each blower. The box
can translate and rotate in any direction while being influenced
by gravitational forces. The second vertical scenario (Fig. 1b)
follows a comparable approach involving a circular object
and eight controlled horizontal blowers. Here, the goal is to
swiftly propel the object upwards. To achieve this, we perform
differentiable physics-based optimisation.

(a)

(b)

Fig. 1: Three frames of the resulting simulations of solids interacting
with fluid streams (from left to right): (a) rectangular object moved
to the left with a vertical flow; (b) the round object lifted from the
ground with a horizontal flow.
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Fig. 2: Overview of the training method. Training is integrated with
the physics simulation that is performed in several timesteps. At first,
the initial state of the environment S0, comprising an object and
the fluid field, is created. At each timestep, the current state Si and
the values of control variable ui are passed to the physics solver,
which produces the next state of the environment. The loss function
is calculated at the final state SN and its gradient is backpropagated
through all time steps to update the control variables.

The mathematics governing this problem are based on
incompressible Navier-Stokes equations, which describe the
motion of fluids. The two characteristic equations of such
issues are the continuity equation (incompressibility condition)
and the momentum equation. The momentum equation is
discretised and solved in the simulation using finite difference
methods. The object’s position and orientation are updated by
using Newtonian laws of motion.

For hosting and processing the simulated scenarios, we
use PhiFlow [4], a differentiable simulation toolkit that en-
ables the integration of physics-based systems for optimisa-
tion and machine-learning tasks. It provides gradient-based
optimisation techniques for applications primarily focused on
computational fluid dynamics (CFD). We adapt PhiFlow’s
implementation of fluid-solid interaction from [3], which is
essential for the simulated scenarios discussed in this section.

A graphical overview of our method is shown in Fig. 2.
Its top part depicts the simulation process. At each simulated
time-step the PhiFlow-based solver reads in the current control
input ui and the current state of the environment denoted
by Si = {x, y, vo, vf , ωo}, where i ∈ {0, 1, 2, . . . , N} with
N denoting the number of time-steps (45 in our case). The
state includes the object’s coordinates (x and y), velocity (vo),
rotational speed (ωo), and the velocity field of the flow (vf ).
Once this process is completed, the loss function is computed
based on the final state SN . In the horizontal scenario, the
loss is defined as the sum of x coordinates over all simulation
steps. This approach yields lower loss values when the object
is successfully moved to the left. In the vertical scenario, the
loss is defined as the negative sum of y coordinates, which
encourages control inputs that result in upward movement.

The bottom part of the diagram depicts training in which the
loss gradient is backpropagated through all the training steps.
We use the Adam algorithm [5] with a learning rate of 0.05
to update the control variables. We perform 1000 optimisation
steps which we found to be sufficient.

Our results are depicted in Fig. 1, which visualises the flow
and object movement in both of our simulated scenarios using

the control variables that are obtained by the optimisation.
Both visualisations show a significant movement of the objects
perpendicular to the stream direction, proving that the applied
training method can produce adequate values for the fluid
stream velocities.

III. CONCLUSION

The findings of this paper have shown that: (1) objects can
be moved with fluids in a direction that significantly deviates
from the blower’s orientation, (2) it is possible to use gradient-
based learning to simulate physical behaviours that would be
nearly impossible to program by hand.

In addition, this research forms a basis for more involved,
three-dimensional simulations that may enable the realisation
of physical devices designed for displacing non-trivial as-
sortments of objects. Applications may range from sorting
packages with air flow to lifting underwater objects with
concentrated streams.
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