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Abstract—In this paper, we outline the structure and necessary
elements of a multi-modal, multi-layered (metric, topological,
semantic) mapping framework intended to be used in au-
tonomous robotics — with a focus on applications in completely
unstructured (i.e., outdoor) environments. A concise overview
of the current state of the art in relevant areas is used to
serve as the basis for a provisional system architecture, while
current limitations are used to motivate key directions for novel
research. Specifically, we intend to tackle the challenges in terrain
segmentation, SLAM in unstructured outdoor environments,
fusing advances in open-set segmentation of 3D point clouds with
hierarchical mapping techniques.
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I. INTRODUCTION

Mapping is a crucial aspect of enabling fully autonomous
operation in mobile robots. Using the same terminology as
in [1] a metric map allows the robot to localize itself in the
environment and avoid obstacles. This becomes topological
when a searchable graph structure is used to describe free
space to aid planning tasks. Semantics then provide additional
information such as the locations of distinct objects, and spa-
tial relationships between them. Fig. 1 illustrates one possible
conceptualization of an autonomous robot’s control system and
the role a mapping framework serves within it.

In many cases, the assumption that a previously constructed
map of the environment is available does not hold. In this case,
it’s necessary to use the methods of Simultaneous Localization
and Mapping (SLAM) to incrementally build one based on
sensor measurements collected during exploration, the funda-
mentals of which are described in much greater detail in [2].
Currently, a multitude of software packages already exists to
tackle the SLAM problem. Metric map construction methods
exist on a continuum from the purely visual [3] through visual-
inertial [4] up to LiDAR-based ones [5], [6], which are more
prevalent in the more variable, less structured outdoor environ-
ment. Others focus on the construction of hierarchical metric-
topological-semantic maps given segmented image data [7],
which contrasts with approaches that directly infer semantics
from point clouds [8].

Specifically with regards to the former — the use of
semantically segmented image data — of great interest are
the great strides that have been made in computer vision
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Fig. 1. A conceptual schematic of an autonomous robot control system.
Highlighted in yellow are the aspects intended to be tackled as part of this
research project - constituting a mapping framework.

over the preceding decade. Methods for mapping text and
images to a shared latent space have been developed [9],
and recently these have been adapted for use in image-based
point cloud segmentation [10]. This bears great promise when
one considers achievements in using large language models
to break down high-level natural language commands into
actionable plans for robot execution [11]. It must, however,
be noted that in some areas even producing segmentations
in discrete class sets remains a challenge, specifically in the
domain of terrain segmentation [12].

II. APPROACH OVERVIEW

With this background in mind, we seek to build a mapping
framework that advances the state-of-the-art of the semantic
mapping field in the following ways:

• robust multi-modal perception modules with a focus on
outdoor applications, specifically with regards to terrain
traversability segmentation;

• integration between the latest open-set segmentation tech-
niques and hierarchical map representations

To attain the objectives stated above, we plan to build out
a framework consisting of several perception modules and a
SLAM system integrating these into a unified, hierarchical
representation with metric, topological, and semantic layers.



A. Multi-modal terrain traversability segmentation

As in [12], where a vision transformer model is augmented
with a highly engineered auxiliary loss computed directly
on self-attention, we expect to heavily rely on visual (RGB)
data for semantic segmentation of images. For practical path
planning purposes, it is likely that discrete categories of terrain
will have to be mapped even if the complete system also
performs open-set segmentation as in [10]. We expect that
integrating observations made from Unmanned Aerial Vehicles
equipped with radar and/or hyperspectral sensors will help
detect obstacles obscured to cameras mounted on a ground-
based robot and discern otherwise invisible features (e.g.,
waterlogged soil). Higher-quality input data may help offset
the inherent difficulties of terrain segmentation that have thus
far required augmenting standard vision model architectures
with highly engineered additional functionality.

B. SLAM in unstructured environments

Given the much greater variance in lighting conditions,
greater distances, and prevalence of other sources of sensor
ambiguity in unstructured outdoor environments, it is likely
that purely image-based SLAM methods as in [3] will prove
insufficient for our application. Already existing visual-inertial
SLAM frameworks such as [4] provide a sensible starting point
for our own SLAM software implementation. Extending these
to make use of LiDAR data is likely to be a priority. Prior work
in outdoor SLAM often relies on some assumed structure in
the environment — such as the tree trunk features studied in
[5], [6]. Taking a step back from the pure SLAM problem
and considering external sources of positioning data (e.g.,
GPS) may be required for robust localization in environments
without any reliable invariants.

C. Open-set segmentation in hierarchical maps

Assuming reliable estimates of the robot’s pose are avail-
able along with depth measurements, creating 3-dimensional
semantic maps from planar segmentations becomes a matter
of backprojection, which is well understood [10]. However,
existing approaches stop at the construction of point clouds,
which cannot be traversed or queried in computationally
efficient ways. A spatially grounded graph structure as in
[7] provides a much better basis for use with search-based
planning algorithms. Furthermore, work has already been
done in extracting potentially arbitrary complex relationships
between objects in a map through the use of graph neural
networks [8]. However, the latter only studied inference on
point clouds without any prior semantic annotation. We seek
to explore the integration of open-set semantics at the point
cloud level with graph-based, searchable maps. One possibility
worth exploring is the propagation of embeddings through
graph neural networks in constructing true semantic maps of
arbitrary relationships between objects. Ultimately, the goal is
to have a map able to readily interface with natural language
processing conditioned high-level planning engines such as
[11], queryable with respect to text-to-image embedding vec-
tors in addition to discrete categories.

III. DISCUSSION

Surveying the state-of-the-art in semantic SLAM, image
segmentation and language-conditioned planning for robotics
has revealed two clear directions where further research is
needed, and these in turn motivate the structure of our pro-
posed outdoor-oriented mapping framework. Comparing the
maturity of indoor and outdoor approaches, however, indicates
that operating in the less structured, more variable outdoors is
significantly more challenging at the level of perception.
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