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1Institute of Electronics and Computer Science, 14 Dzerbenes st., Riga, Latvia

2Institute of Mathematics and Computer Science, University of Latvia, Raina blvd. 29, Riga, Latvia
*Contact: artis.rusins@edi.lv

I. INTRODUCTION

In the past 7 years there has been sharp increase in number
of connected wearable devices worldwide from 325 million
in 2016 to 1105 million in 2022 [1]. This has led to growing
concerns about privacy of the data collected by these devices.
Wearable devices are becoming more sophisticated and can
collect a wide range of data about the user and it is usually
sent over using Bluetooth or Bluetooth Low Energy (BLE)
standards which we are investigating. RF fingerprinting is one
of the emerging techniques that can identify specific device
by analyzing radio waveforms generated by target device
and extracting unique features from it. However, wearable
device RF fingerprinting is relatively unexplored research topic
and thus it it important to investigate its effectiveness before
offering countermeasures. In this paper we try to replacite
results of previous RF fingerprinting attempts for Bluetooth
devices.

In this paper we:
• Gather wearable device radio data in isolated environment

for automated data capture
• Extract carrier frequency offset (CFO) and amplitude

scaling factor fingerprints from the data
• Show that devices are distinguishable by these parameters
• Discuss the impact on wearable device privacy and secu-

rity

II. BACKGROUND

Wearable devices typically use short range Peer-to-Peer
(P2P) communication standards such as Bluetooth, BLE,
Wi-Fi or radio frequency identification (RFID). Due to its
widespread adoption worldwide, this paper focuses on Blue-
tooth standard. Bluetooth is short range wireless communi-
cation standard that uses frequency hopping spread spectrum
(FHSS) in the 2.4 GHz band to hop between 79 available
radio channels. Each channel has a bandwith of 1 MHz.The
hopping pattern is pseudo random and is determined by the
master device clock and broadcast address (BD ADDR). To
mitigate privacy concerns, Bluetooth devices cryptographi-
cally anonymize and periodically rotate the broadcast address
(BD ADDR) of device, while allowing trusted (previously
paired) devices to connect to it.

Previous research has shown that this anonymization of
BD ADDR can be rendered useless because it is possible

to detect presence of device by its unique RF fingerprints
[2]. CFO is the difference between the frequency at which
radio transmission is supposted to happen and the frequency
at which it actually happens. The ”scaling factor” is amplitude
variations within a packet and is used to normalize amplitude
to roughly [-1;1] before demodulation. Both CFO and ampli-
tude scaling is usually done by Bluetooth chipset, and these
values are not available to user, so we extract them manually.

III. EXPERIMENTAL SETUP

One of key challanges in extracting RF fingerprints is
determining which radio packets are from our DUT and which
come from nearby devices. To address this, we do all radio
recording inside a radio frequency anechoic chamber. Our
recording devices of choise are Ettus Research USRP B210
and B200 software defined radios, due to availability and good
software support. They can both record at sampling rate up
to 56 MHz. To capture all Bluetooth channels, we use 2
SDRs, with one of them recording lower end of the Bluetooth
spectrum and the other one higher end.

Fig. 1. Overview of capture setup

To capture whole communication process (advertising, pair-
ing and data exchange), we use Android Debuging Bridge
(ADB) [3] to enable Bluetooth on the smartphone and start
pairing process inside closed chamber while the SDRs record
everything. SDRs and smartphone are connected to the host PC
via optical-to-USB converter because traditional copper wires
can act as antennas and pick up unwanted signals outside the
chamber.

SDRs use sample rate of 40 MHz, both data streams are
then shifted in frequency, resampled and then added together
to create 80 MHz wide signal that includes all Bluetooth
channels. We then extract individual bluetooth packets by



Fig. 2. Anechoic chamber with DUT, host device, USB to optical converters
and SDRs

performing energy detection and FHSS dehoping using Sania
Labs GNU Radio out-of-tree module [4]. To extract CFO
and scaling factor values for each packet we use algorithm
described by Mike Ryan of ICE9 Consulting LLC [5]. For
every detected packet:

1) Separate all samples of negative and positive amplitude
2) max = median(positive samples)
3) min = median(negative samples)
4) CFO = (max−min)/2
5) scaling factor = (max− CFO)/2

In our experiments, we use Samsung Galaxy S20 FE
smartphone as the host device and all earbuds as wearable
DUT.

TABLE I
LIST OF AVAILABLE TEST DEVICES

Model Type Bluetooth version
Redmi Air Dots Earbuds 5.0

JBL Tune 130NC TWS Earbuds 5.2
eSense Earbuds 5.0

IV. RF FINGERPRINTS

When plotting the CFO versus scaling factor for all wear-
able devices for Bluetooth advertising packets, they are vi-
sually distinguishable (see Figure 3). By examining the CFO
and scaling factor values at different communication phases
(advertising, pairing, data streaming), we observed that they do
not change significantly for each device. The result is expected
since these physical imperfections originate from the hardware
components and are not affected by the overlaying protocols.

V. IMPACT

One of the first papers to focus on the importance of
fingerprinting was ”BlueSniff: Eve meets Alice and Bluetooth”
[6]. In this paper the authors explored the potential impact
of fingerprinting Bluetooth devices by exploiting the security
offered by ”undiscoverable mode” and obtaining the full

Fig. 3. CFO vs Scaling Factor

BD ADDR. The research work led to the development of
the first open-source Bluetooth sniffer called ”BlueSniff” and
emphasized the necessity to tighten security measures to mit-
igate potential threats. The sniffer used Bluetooth fingerprints
to identify and track devices. Although this paper did not
demonstrated a practical example of a specific attack, it was
one of the first steps to highlight the importance of Bluetooth
sniffing capabilities by overcoming eavesdropping obstacles
such as anonymized BD ADDR. Our paper also shows that it
is possible to track such devices.

VI. FUNDING
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